翻訳と辞書
Words near each other
・ Mocius
・ Mock
・ Mock & Sweet
・ Mock & Toof
・ Mock (surname)
・ Mock auction
・ Mock Auctions Act 1961
・ Mock combat
・ Mock draft
・ Mock duck
・ Mock election
・ Mock election in the King's Bench Prison
・ Mock execution
・ Mock interview
・ Mock Mayor
Mock modular form
・ Mock Morris
・ Mock object
・ Mock olive
・ Mock orange
・ Mock Orange (album)
・ Mock Orange (band)
・ Mock Spanish
・ Mock strawberry
・ Mock the Week
・ Mock trial
・ Mock trumpet
・ Mock Tudor (album)
・ Mock Turtle
・ Mock turtle soup


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mock modular form : ウィキペディア英語版
Mock modular form
In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook. discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms.
==History==

Ramanujan's 12 January 1920 letter to Hardy, reprinted in , listed 17 examples of functions that he called mock theta functions, and his lost notebook contained several more examples. (Ramanujan used the term "theta function" for what today would be called a modular form.) Ramanujan pointed out that they have an asymptotic expansion at the cusps, similar to that of modular forms of weight 1/2, possibly with poles at cusps, but cannot be expressed in terms of "ordinary" theta functions. He called functions with similar properties "mock theta functions". Zwegers later discovered the connection of the mock theta function with weak Maass forms.
Ramanujan associated an order to his mock theta functions, which was not clearly defined. Before the work of Zwegers, the orders of known mock theta functions included
:3, 5, 6, 7, 8, 10.
Ramanujan's notion of order later turned out to correspond to the conductor of the Nebentypus character of the weight harmonic Maass forms which admit Ramanujan's mock theta functions as their holomorphic projections.
In the next few decades, Ramanujan's mock theta functions were studied by Watson, Andrews, Selberg, Hickerson, Choi, McIntosh, and others, who proved Ramanujan's statements about them and found several more examples and identities. (Most of the "new" identities and examples were already known to Ramanujan and reappeared in his lost notebook.) found that under the action of elements of the modular group, the order 3 mock theta functions almost transform like modular forms of weight 1/2 (multiplied by suitable powers of ''q''), except that there are "error terms" in the functional equations, usually given as explicit integrals. However for many years there was no good definition of a mock theta function. This changed in 2001 when Zwegers discovered the relation with non-holomorphic modular forms, Lerch sums, and indefinite theta series. showed, using the previous work of Watson and Andrews, that the mock theta functions of orders 3, 5, and 7 can be written as the sum of a weak Maass form of weight and a function that is bounded along geodesics ending at cusps. The weak Maass form has eigenvalue 3/16 under the hyperbolic Laplacian (the same value as holomorphic modular forms of weight ); however, it increases exponentially fast near cusps, so it does not satisfy the usual growth condition for Maass wave forms. Zwegers proved this result in three different ways, by relating the mock theta functions to Hecke's theta functions of indefinite lattices of dimension 2, and to Appell–Lerch sums, and to meromorphic Jacobi forms.
Zwegers's fundamental result shows that mock theta functions are the "holomorphic parts" of real analytic modular forms of weight 1/2. This allows one to extend many results about modular forms to mock theta functions. In particular, like modular forms, mock theta functions all lie in certain explicit finite-dimensional spaces, which reduces the long and hard proofs of many identities between them to routine linear algebra. For the first time it became possible to produce infinite numbers of examples of mock theta functions; before this work there were only about 50 examples known (most of which were first found by Ramanujan). As further applications of Zwegers's ideas, Kathrin Bringmann and Ken Ono showed that certain q-series arising from the Rogers–Fine basic hypergeometric series are related to holomorphic parts of weight 3/2 harmonic weak Maass forms and showed that the asymptotic series for coefficients of the order 3 mock theta function ''f''(''q'') studied by and converges to the coefficients . In particular Mock theta functions have asymptotic expansions at cusps of the modular group, acting on the upper half-plane, that resemble those of modular forms of weight 1/2 with poles at the cusps.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mock modular form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.